Online Adaptive Statistical Compressed Sensing of Gaussian Mixture Models

نویسندگان

  • Julio Martin Duarte-Carvajalino
  • Guillermo Sapiro
  • Guoshen Yu
  • Lawrence Carin
چکیده

A framework of online adaptive statistical compressed sensing is introduced for signals following a mixture model. The scheme first uses non-adaptive measurements, from which an online decoding scheme estimates the model selection. As soon as a candidate model has been selected, an optimal sensing scheme for the selected model continues to apply. The final signal reconstruction is calculated from the ensemble of both the non-adaptive and the adaptive measurements. For signals generated from a Gaussian mixture model, the online adaptive sensing algorithm is given and its performance is analyzed. On both synthetic and real image data, the proposed adaptive scheme considerably reduces the average reconstruction error with respect to standard statistical compressed sensing that uses fully random measurements, at a marginally increased computational complexity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. ST ] 2 9 M ay 2 01 5 SENSING TENSORS WITH GAUSSIAN FILTERS STÉPHANE

Abstract. Sparse recovery from linear Gaussian measurements has been the subject of much investigation since the breaktrough papers [6] and [11] on Compressed Sensing. Application to sparse vectors and sparse matrices via least squares penalized with sparsity promoting norms is now well understood using tools such as Gaussian mean width, statistical dimension and the notion of descent cones [22...

متن کامل

Compressed Sensing Reconstruction via Belief Propagation

Compressed sensing is an emerging field that enables to reconstruct sparse or compressible signals from a small number of linear projections. We describe a specific measurement scheme using an LDPC-like measurement matrix, which is a real-valued analogue to LDPC techniques over a finite alphabet. We then describe the reconstruction details for mixture Gaussian signals. The technique can be exte...

متن کامل

Adaptive Group Testing Strategies for Target Detection and Localization in Noisy Environments

This paper studies the problem of recovering a signal with a sparse representation in a given orthonormal basis using as few noisy observations as possible. As opposed to previous studies, this paper models observations which are subject to the type of ‘clutter noise’ encountered in radar applications (i.e., the measurements used influence the observed noise). Given this model, the paper develo...

متن کامل

Recognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model

Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....

متن کامل

Compressive Sensing via Low-Rank Gaussian Mixture Models

We develop a new compressive sensing (CS) inversion algorithm by utilizing the Gaussian mixture model (GMM). While the compressive sensing is performed globally on the entire image as implemented in our lensless camera, a lowrank GMM is imposed on the local image patches. This lowrank GMM is derived via eigenvalue thresholding of the GMM trained on the projection of the measurement data, thus l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1112.5895  شماره 

صفحات  -

تاریخ انتشار 2011